
soclAL pROCESSES AND pROOFS OF THEOREMS AND PROGRAMS
+

Richard A. DeMillo*

Georgia Institute of Technology

Richard J. Lipton and Alan J. Perlis*

Yale University

“I should like to ask the same question

that Descartes asked. You are proposing

to give a precise definition of logical

correctness which is to be the same

as my vague intuitive feeling for

logical correctness. How do you intend

to show that they are the same? . . .

r,
. . . [the average mathematician]

should not forget that his intuition

is the final authority . . .“

+
J. Barkley Rosser

It is exactly those processes which mediate

proofs of theorems in mathematics that require

that program verification, as perceived by a

large segment of the computer science community,

is bound to fail in its primary purpose: to

dramatically increase one’s confidence in the

correct functioning of a particular piece of

software. This is a view that we have found to

be shocking to many, but the key to our position

rests on a relatively simple observation. A

large measure of credit for the continued success

and growth of mathematics belongs to the social

mechanism of “proving” theorems; in proving

+
Many of the ideas reported in this paper were

crystallized out of discussions held at the DOD

Conference on Software Technology, July 12 & 13,

1976 in Durham, NC. We acknowledge in particular

the help of J.R. Suttle who organized this con–

ference and has been of continuin~ encouragement
in our work.

This work was supported in part by the US Army

Research Office, Grant No. DAHC04–74–G-0179, DAAG

29–76–G–0338 and by NSF Grant No. DcR74–12870.
3?

Authors’ Addresses: R. DeMillo, School of In-

formation and Computer Science, Georgia Institute

of Technology, Atlanta, GA 30332; R. Lipton, A.

Perlis , Department of Computer Science, Yale Uni–

versity, New Haven, CT 06520.

‘Logic for Mathematicians, McGraw–Hill, 1953.

programs, however, these social mechanisms are

almost totally lacking.

It has been extensively argued that the art

and science of programming should strive to become

more like mathematics. In this paper we argue

that this point of view is correct, but that the

reasons usually given for it are wrong. In the

first part of the paper we present our view that

mathematics is, rather than a formal process, an

ongoing social process and that the formalistic

view of mathematics is misleading and destructive

for proving software. In the second part of this

paper we interpret these arguments as positive

suggestions for producing reliable software and

better programming tools, and we conclude that

there is every reason to believe that there are

social mechanisms that can make program verifica-

tion more like “real” mathematics.

We have used ‘proving’ in two different senses

in a previous paragraph. The doubly quoted sense

of ‘proof’ refers to the common notion of informal

proof used in everyday mathematics; the italicized

sense of ‘proof’ refers to the formal notion of

proof that appears in the literature on program

verification.

By a proo~we shall mean the sort of valid,

step-by–step, syntactically checkable deduction as

may be carried out within a consistent, formal,

logical calculus such as Zermelo-Fraenkel set

theory or Peano arithmetic. We have been condi–

tioned to confuse proofs with “proofs.” Let us

call this viewpoint monolithic. The monolithic

view is the one of Hilbert school of logic: mathe–

matics proceeds from axioms (or postulates or

hypotheses) to theorems by steps, each of which is

easily justifiable from its predecessors by a fixed

206

allowable rule of transformation. We will begin

by arguing that the views of the Hilbert school

can be very misleading and that mathematics is

(and must be) highly non-monolithic.

BELIEVING THEOREMS

“Indeed, every mathematician knows that

a Proof has not been ‘understood? if one
has done nothing more than verify step

by step the correctness of the deductions

of which it is composed and has not tried

to gain a clear insight into the ideas

which have led to the construction of

this particular chain of deductions in

preference to every other one.”

-t
N. Bourbaki

Stanislaw Ulam [1] estimates that every year

over 200,000 theorems are published by mathemati–

cians. A fair number of these are subsequently

contradicted or disallowed for other reasons,

others are thrown into doubt, most are ignored,

but a tiny fraction come to be believed by a

sizea,ble portion of the mathematical community.

Theorems that get published are seldom the

work of crackpot scientists, and those that are

discredited are not always the work of incompe–

tent mathematicians. In 1879, Kempe [2] published

a “proof” of the four-color conjecture which

stood for eleven years before a fatal flaw in

the reasoning was uncovered by Heawood [3] (this

fallacious “proof,” by the way, has since been

rediscovered by many well-known mathematicians who

managed to convince their colleagues that they

had at last solved this celebrated problem). The

algebraist Britton published a monumental 300-

page “proof,” apparently settling an important

problem i.n group theory [4]--unfortunately, the

“proof” contains a flaw so subtle that it can

only be detected by a very careful analysis of an

i+
induction involving many lemmas chained together.

Mathematical folklore is filled with stories of

famous mathematicians whose best efforts were

sometimes less than perfect––of, for instance,

Legendre rising to address a mathematical con-

gress only to’ pause, return his notes to his

pocket, and quietly announce that the matter would

+
The Architecture of Mathematics,” American Math.

Monthly, 57 (1950): 221-323.

HThe authors are indebted to Prof. Y. Zalcsteim

for this observation.

require further thought.

Just increasing the number of mathematicians

working on a given problem does not necessarily

insure believable “proofs.” Recently two indepen-

dent groups of topologists (one American, the

other Japanese) announced results concerning the

same homotopy group (a type of object arising in

homotopy theory; a branch of topology). The

results turned out to be contradictory, and since

both “proofs” were very complex and involved

detailed symbolic and numerical calculation, it

was not at all evident who.had goofed. But the

stakes were sufficiently high to press the issue,

so the Japanese and American “proofs” were ex–

changed. Obviously each group was highly moti-

vated to discover an error in the others ‘ “proof,”

but neither the Japanese nor the American “proof”

could be discredited; yet one was clearly incor–

rect. Subsequently, a third group of researchers

obtained yet another “proof,” this time supporting

the result in favor of the Americans. The weight

of evidence now being against their “proof,” the

Japanese retired to reconsider the issue. Notice

that the probable truth of the theorem, at this

point, is still very low compared to the far more

comprehensible results we tend to regard as theo-

rems. One of the American mathematicians was so

unsettled by this experience that he has since

given up mathematics for, presumably, a career in

which the results of his labor can be judged more

objectively.

A recent issue of Science [5] contains a

provocative suggestion that the apparently secure

notion of mathematical truth may be due for

revision. The central issue here is not how

“proofs” get believed, but rather what it is that

is believed when one asserts his belief of a

particular theorem. There are two relevant views

that may be roughtly classified as classical and

probabilistic.

The CZassieal View. When one believes a

mathematical statement A, one believes that, in

principle, there is a correct, formal pPOOf of A

in a suitable logical theory that (semantically)

completely formalizes the Aristotelian notion of

truth: ‘“A’ is true if it says of what is that it

is, and it says of which is not that it is not.”

207

Two points deserve special attention here. First,

the classical view requires that we judge proper–

ties of mathematical objects in a strictly biva–

lent fashion: a theorem either ascribes or fails

to ascribe a property to an object. Secondly,

the classical view does not require that every

informal “proof” be accompanied by its formal

counterpart . In fact, the classical view does

not even require that it be humanly possible to

produce such a proof. There is a mathematically

sound reason for allowing the gods to formalize

some of our arguments. For even the most trivial

mathematical theories, there are simple statements

whose finite proofs are impossibly long. Albert

Meyer’s outstanding lecture on the history of

such research [6] concludes with a striking

physical interpretation of how hard it may be to

prove comparatively simple mathematical state-

ments . Suppose that we encode logical formulas

as binary strings and set out to build a computer

that will decide the truth of a simple set of

formulas of length, say,at most 1000 bits. Then

even allowing ourselves the luxury of a techno–

logy that will produce proton–sized electronic

components, connecting them with infinitely thin

wires, the computer we design must densely fill

the entire observable universe. These precise

observations concerning lengths of proofs coin–

tide with our intuitions about the amount of

detail embedded in “proofs.” For example, we

often use

!! . . . let us assume without loss of

generality . . .“

and

!, . . . therefore, by renumbering if
necessary . . . “

to replace enormous amounts of formal detail.

T?w ProbzbiZistie Vieti. Since long “proofs,”

in the classical view, can only be viewed as

probably correct, it is perhaps reasonable to

deliberately give probabilistic demonstrations

of mathematical statements. The reasoning is

that a probabilistically valid “proof” may have

the dual advantag@ of being technically easier

than a classical one and may allow mathematicians

to isolate those critical ideas that give rise to

uncertainty in classical “proofs’’-–hopefully, this

process leads to a more plausible (classically)

valid “proof.” An illustration of this notion is

Michael Rabin’s algorithm for testing probable

primality [7]. For very large integers N, all of

the classical techniques for determining whether

or not N is composite fail because of computational

reasons--more time is required for the test than is

left in the lifetime of the earth. Rabin’s insight

was that it is possible to guarantee that any such

N is prime or not with vanishingly small probabili-

ty of error, within a reasonable amount of time.

In view of these difficulties, how is it that

mathematics has survived and has been so success–

ful as a description of nature? Obviously, impor-

tant theorems get believed by mathematicians and

mOst of these survive. Is it possible that this

process is at an end, and that mathematics in its

classical form will not survive? Almost certainly

not. The mechanisms that cause theorems to be

believed and understood operate exceedingly well

in large communities of mathematicians. Let us

sketch some of these mechanisms.

First, “proofs” are widely read. An author

writes a “proof” down on paper and reads it for

errors . In the common case that several mathema–

ticians collaborate on the same “proof,” it is

usually read by them all, by their students, and

by many others. This leads to a second mechanism.

“Proofs” are refereed, published and reviewed.

This is a triple filter. A referee must be con–

vinced before publication. A large audience must

be convinced in a printed article. Finally, after

some of the smoke has cleared, a reviewing publica–

tion such as Mat7zematieaZ Reviews takes a more

leisurely look at the “proof.” Third, mathemati-

cians talk to each other. They give symposium and

colloquium talks which attempt to convince doubting

(sometimes hostile) audiences of their arguments,

they burst into each others’ offices with news of

insights for current research, and they scribble on

napkins in university cafeterias and expensive

restaurants . All for the sake of convincing other

mathematicians . They key is that other mathemati-

cians are inclined to listen!

What happens to a “proof” when it is believed?

The most iamediate transformation is probably an

internalization of the’ “proof.” ThJs leads usually

to alternative “proofs” and several versions of

the same theorem. An excellent source of examples

208

of the transformations that can take place by

this process is the little monograph by Paul Erd6s

and Joel Spencer [8]. The combinatorial proper–

ties discussed in [8] are usually presented in a

variety of guises, each of which aids the intuition

in a slightly different way. After enough inter–

nalization and alternative “proof” construction,

the community seems to decide that the central

concepts have an ultimate stab~~ity. If the

various proofs begin to “feel right” and the con-

cepts are examined from enough angles, the classi-

cal truth of the theorem becomes established.

The next activity that sometimes takes place

is that the theorem is generalized in some way.

If, in the passage to the

social mechanisms lead to

generalized “proof,” then

the original statement is

generalization, the

the belief of the

the probable truth of

considered established.

Finally, important theorems are used. They ,

may appear as lemmas in larger “proofs”; if they

do not lead to contradictions, then the confidence

in the supporting lemmas of a larger “proof” is

increased. Theorems can be used in other ways.

For example, engineers use theorems by “plugging

in” values and relying on a particular physical

interpretation of the conclusion. Planes that

fly and bridges that stand are impressive

evidence of belief in theorems.

Believable theorems sometimes make contact

with other areas of mathematics––important ones

invariably do--and the successful transferal of

information between distinct branches of mathe-

matics also increases confidence in theorems.

The most famous example of this sort of “techno-

logy transfer” is Hadamard’s “proof” [9] of

the prime number theorem. This celebrated “proof”

uses connections established by Riemann and

Dirichlet between theorems in complex analysis and

certain asymptotic properties of the sequence of

prime numbers. A more recent example of the same

phenomenon is the comparatively rapid digestion

of the notion of @Z&ng into mathematical logic.

Paul Cohen’s original “proof” [10] of the

independence of the Axiom of Choice and the

Generalized Continuum Hypothesis from the remaining

axioms of set theory was so radical that it was

believed (i.e., understood) by

Dana Scott, Robert Solovay and

very few logicians.

J. Barkley Rosser

internalized Cohen’s central notion of forc~ng

giving it an alternative algebraic characteriza-

tion [11]. Abraham Robinson and others [12] con–

netted forcing arguments with more familiar ideas

in logic, generalized the concept, and found the

generalization to be immensely useful. When

Cohen announced his results to the National

Academy of Sciences in 1964, very few logicians

believed his “proofs.” By 1976, forcing arguments

are routinely studied by graduate students in

logic and are used as standard tools in certain

areas of logic (half of the papers examined in

random selection from the Journal of Symbolic

Logic make essential use of forcing).

Let us summarize the main argument of this

section. Working mathematicians usually do not

believe “proofs” because they believe that they

can translate them to a formalized logical theory

to act as the ultimate arbiter. Rather, mathe–

matical theorems get believed because they are:

1. read

2. refereed, published, and reviewed

3. discussed

4. internalized and paraphrased

5. generalized

6. used, and

7. connected with other theorems.

THE ROLE OF SIMPLICITY

We acknowledge that very few theorems are

subject to azz of the filters 1 through 7 listed

above. Indeed, the degree to which a theorem is

believed is largely governed by its importance,

and this seems to be highly correlated with its

simplicity of statement. As a general rule, the

most important mathematical problems are “clean”

and simple to state. An important theorem is much

more likely to take the form

!lkeorwrn. Every -–––-– is a –-––--,

rather than the form

Theorem. If --–- and –-–- and ---– and ----

and ----- except for special.cases
i. -------------

.

xx---------------
s

then unless
i. -------------, or

.

~iv.-----------

every ----— that satisfies --- is a -----

209

The problems that have most occupied mathemat-

icians since Thales have been simple to state.,,

In”fact, mathematicians probably use simplicity

as a first guage of a problem’s importance, so

that the decision to consider a “proof” in de-

tail is often influenced by some slightly irra-

tional concern––’’how does the problem feel?” This

is Occam’s razor for mathematics; Einstein held

that the maturity of a scientific theory could

be judged by how well it could be expla$ned to the

man on the street [13]. A similar criterion

aPPlies to mathematical theories.

Of course, a judgement of simplicity must

be tempered by the underlying theory. The four-

color conjecture rests on such slender foundations

that it can be stated with complete precision to

a child. The Riemann hypothesis asks about

location of the zeroes of the complex function
m

c(s) =
z

–s
n,

~. 1

which may not be clear to a non–scientist, but

certainly requires only the most terse introduc-

tion to mathematics. The deeper independence

questions of set theory are similarly basic; can,

for example, the existence of certain large ob–

jects be proved from the remaining axioms of set

theory ? Even though it requires some effort to

be precise in stating such a problem, the

informal statements serve the intuition very well.

A simple statement of category theory may look very

complicated as a formal statement in axiomatic set

theory; but we are generally willing to allow for

this sort of translational phenomena because of

the social processes. Category theorists have

internalized the fundamental concepts of their

field in ways which are foreign to, say, set theo-

rists. But the important concepts are simple in

their domains.

The point, again, is that simple, unspecial-

ized theorems––those that are easy to state and

motivate in a specific domain––are far more likely

to be read, published, and used, than idiosyn–

chratic, narrow theorems that apply to such a

paltry class of structures that no mathematician

will ever again consider the class. Yet it is

exactly this kind of theorem that arises in pro-

gram proving. For real programs deal with real

human activity and are thus detailed and messy,

reflecting the ad-hocery and defaults which are

imposed upon them by their human designers. Real

programs are not simple in the sense we mean here,

and the theorems that arise in trying to prove

real programs are not simple.

BELIEVING SOFTWARE

“The program itself is the only

complete description of what the

program will do-.”

The mechanisms that save

matical theorems are the ones

software. Let us concentrate

P. J. Davis
+

“proofs” of mathe–

that doom proofs of

on program verifica–

tion by the method of inductive assertions.

The kinds, of specifications that usually

accompany software tend to be long and complex.

That is, the verification conditions that result

from common input–output assertions (these are

the theorems to be p~oved) seldom satisfy the

simplicity criteria outlined above. Workers in

the area of program correctness counter this argu-

ment by claiming that the long complex theorems to

be pPoved are seldom deep; that they are, in fact,

usually nothing more than extremely long chains

of substitutions to be checked with the aid of

simple algebraic identities. One group we know of

has taken this concept to its extreme by proposing

that verification conditions be proved by teams

of “grunt mathematicians.” Presumably, these are

to be teams of low–level mathematical “technicians”

who will––savant–style––check the verification

conditions . Besides offending the sensibilities,

the “grunt mathematician” concept is exactly why

verification must fail.

What program provers have failed to recog–

nize is that the proofs will be unbelievable, not

because the theorems that are being proved are

deep, but rather because the social mechanisms

that we have discussed here simply will not apply

to the kinds of theorems that they are proving.

The theorems are neither simple nor basic, and

the proofs of even very simple programs run into

dozens of printed pages. Thus , the incentive for

+,,,
Fidelity in Mathematical Discourse: Is One and

One Really Two?” American Math, Monthly, 79

(1971):252-263.

210

a community to accesa and assimilate the “proof”

of an individual piece of software is no longer

present; ~pOOfS simply will not be read, refereed,

discussed in meetings or over dinner, generalized,

or used. They are too specialized for any of

those activities. The sad fact is that the kind

of mathematics that goes on in proofs of

correctness is not very good.

There are, of course, algorithms that do get

“proved.” But these tend to be algorithms like

FIND f143, which while generally useful, have

nothing to do with software---the kind OF program

that is written for specialized uses and which

must operate in a production programming environ-

ment ! The fast pattern matching algorithm of

Knuth, Morris and Pratt [15] was first implemented

and ~Poued by Jim Morris as part of Berkeley’s

text editing system. Subsequently, a system

programmer who did not understand the new algo-

rithm, pulled it from the text editor and replaced

it with a much slower pattern matching routine.

Presumably the system programmer “undersood” the

new algorithm. The point is simple: the kinds of

algorithms that get “proved” correct have nothing

to do with software; give a choice between a

very good algorithm with a proof of correctness,

but which may be hard to understand, and a

straightforward, unproven algorithm which an

implementor believes he understands, the com–

plex algorithm invariably loses. And, it is the

complex algorithms that are most interesting and

have the most chance of being subjected to the

sociology of “proof.”

There have been several apparent trap doors

left in our argument thus far. We will now seal

them off.

What about machine–aided proof systems?

Well, totally automated prwof’ systems are out of

the question for a variety of reasons. In the

first place, the lower bounds [16] on the length

of computer proofs for mathematical theories

paints a very dim picture of automated Proof

Secondly, researchers in the area do not even

take seriously the possibility of totally auto-

mated proof. Ralph London [17] characterizes the

“out-to-lunch” program verification system as one

that can be left in an unsupervised mode to grind

out the proofof a program. Even if an out–to-

lunch syst~m could be built (and London doubts

that such a system Can be built) to work with

reasonable reliability, imagine the reaction of a

programmer who inserts his 300-line input-output

package and returns several hours later to find

the message “VERIFIED,” followed by a 20,000 line

proof. We seem to be left with some kind of man-

machine system that uses machine checks on complex

proofs . This type of system, of course, does not

help at all. The human prover still makes mis-

takes that will never be subjected to the social

processes of “proof.”

Another apparent way out is to use very high

level languages to raise the intellectual content

of the theorems being proven. The strategy here

is to use the fact that very high level languages

can deal directly with a broader range of mathema–

tical objects to insure that the complex theorems

resulting in a set of verification conditions will

be truly interesting and therefore subject to the

social processes we have been discussing. Unfor–

tunately, the situation in proofs of very high

level programs is not much changed over their

lower–level counterparts. For example, the

following verification condition arises in the

proofof a Fast Fourier algorithm written in

Madcap, a very high level language similar to

SETL [18].

Theorem (?). If N is a pOwer of 2, F is a

complex vector and r is an integer, and if

S E {1,-1} and b = 2
2rrSi/N

, and C =

{2j : 0Lj2N/4],

then

i. <bj : OLj LN/4> = <ar : a =
r

b
r mod n/2

and O < r<N/2>

ii. <j : OSj<N/2).(j :jmodN’N/2

)and O ~j < N

iii.
(

ifF=f =x=x
r)

and O ~r < N
r r

then

<
P(FA + FA*) b a(FA – FA,)) =

(I
(kl Ir 2r-1 I)mod N

fr:fr= b xk
1

k CR
lr

and R = {j : (j-r)

r ZOmod N/2})

211

At some level, the transition between

specification and program must be left unformalized;

this follows by two compelling observations. First,

the data sets on which programs operate are, in

general, enormously complex objects. In computing

the payroll for the French National

example, we find that each employee

3,000 pay rates, incorporating, for

time his train was traveling uphill

Railroad, for

has more than

instance, the

versus down–

hill. Similarly, the input assertions for many

numerical algorithms are not even formulatable--

certainly they cannot be formalized [19]. The

second observation seems to us to be the most

telling, however. The purpose of a program is an

informal, often unstated, criterion and the tran–

sition from informal to formal objects must forever

be unformalized, lest we be caught in the paradox

of assuming the formalization of an object we know

only informally.

CONSTRUCTING BELIEVABLE SOFTWARE

“One of the chief duties of the mathe–

matician in acting as an adviser to

scientists . . . is to discourage them
from expecting too much of mathematics.”

N. Wiener
+

We can combine the arguments of previous sec–

tions with the intuition gathered from a century

(or so) of experience in dealing with mathematics

in a symbolic, formalistic way. Since ’’symbols”

can be written and moved about with negligible

expenditure of energy, it is tempting to leap to

the conclusion that anything is possible in the

symbolic realm. This is the lesson of computabi–

lity theory (viz., solvable problems”vs. unsolva–

ble problems), and also the lesson of complexity

theory (viz., solvable problems vs. feasibly

solvable problems) : physics does not suddenly

break down at this level of human activity. It

is no more possible to construct symbo2ic atruc–

tures without using energy than it is possible

tO construct material structures for free. But

if symbols and material objects are to be identi–

fied in this way, then we should perhaps pay

special attention to the way material artifacts

are engineered, since we might expect that, in

+
I Am a Mathematician, The Later Life of a Prodi–

Q, MIT Press, 1964.

principle”, the same limitations apply. Before we

return to our theme of relating proofs to believ-

able software, let us briefly digress to consider

the role of engineering principles.

It appears to us that the engineering pro-

fessions have been remarkably adept at reconciling

the normal-cultural desires for the creation of

reliable structures w’ith two human failings:

(1) human beings cannot create perfect

mechanisms,

(2) human beings tend to plunge into

activities before they are understood.

Surprisingly, this reconciliation is accomplished

by virtue of the same social mechanisms we have

been extolling. First, in mature engineering

disciplines, “reliable” never means “perfect” in

the monolithic, classical notion of “perfection.”

There are simply no proofs (or “proofs”) that

bridges stand, that airplanes fly, or that power

systems deliver electricity. Rather, engineers set

probable limits of failure, relying on other design

criteria to place these limits well above the con–

ditions likely to be encountered in practice. It

is perhaps “symbol chauvinism” which suggests to

computer scientists that (a) our structures are

so. much more important than material structures

that they should be perfect, (b) our available

energy is, in practice, sufficient to certify pro–

grams as perfect. We now see connections with

mathematics: the probabilistic view of mathematical

truth is closely allied to the engineering notion

of reliable structure. This suggests that we

should make more serious attempts to treat software

reliability in a setting distinct from program

proving, since both merely establish expected

limits of confidence.

Second, engineers tend to counteract the

human tendencies to try “untested” designs by lim–

iting the amount and kind of innovation in designs.

This suggests that engineers tend to “recycle”

designs and to thus subject them to some of the

same social processes as are present in mathematics.

Is the situation as bleak as we suggest?

There are almost certainly mechanisms which make

software more like mathematics in the, reaz sense––

i.e., which elevate software to the level at which

the social processes described above operate. Many

of these mechanisms are just applications of

212
1

unselfconscious engineering design principles

(e.g., seek reliability within economic limits,

channel innovation into constructive paths by

reusing previously successful designs), while

many are straightforward extensions of our

thoughts on what causes mathematics to be, in the

main, successful.

The desire to “prove” programs correct is

constructive and valuable; the monolithic view

of “proof” has succeeded in hiding the primary

benefits to accrue from program proof. What we

have done is to point out a basic difficulty with

any large-scale attempt to prove programs correct.

However, “proofs” of software may be coupled with

engineering techniques and may yet succeed.

Indeed there is considerable evidence that the

verification of software can be subjected to the

key social processes that allow us to understand

and believe mathematical “proofs”; i.e., there

are mechanisms with which to make software more

like real mathematics.

The first mechanism which may be exploited

is the device of creating general structures, the

rarious instances of which become more reliable

due to the believability of the general struc–

tures. In particular, the Alphard notion of

form appears to be exactly the sort of mechanism

that encourages this sort of activity: “ . . .

a library of useful abstractions will develop,

and . . . programmers will simply not have to

program as much to get a new system . . .“ [20].

This notion has appeared in recent years in

several incarnations: Donald Knuth’s insistence

[21] in the creation and understanding of general-

ly useful algorithms represents such a trend; the

team programming methodology of [22] is another

example of attempts to ezport software explicitly

for the purpose of exposing it to social proces–

ses. Reusability of effective designs causes a

wider community to examine the programming tools

to be most commonly used.

A second mechanism is the notion of high–

level “proof.” We have basically argued that a

proof of correctness will not be correct. How–

ever, if “proofs” are correct, they must be

generally us~~-ul in order that Information may be

extracted from them. The metaphor here is that

algorithms yield ideas about other algorithms and

are thus exportable, while low–level proofs may not

be exported. The languages of “proof” must be

carried out in high level structures–-certainly at

higher levels than programming is done. Consider

that theorems which are subjected to social mecha-

nisms are exported to a larger community, and if

they are created in high–level languages then

instantiation to programs become feasible and con–

sistent with our other mechanisms.

The concept of verifiably correct software

haa been with us too long (as a goal) for it to be

easily displaced; in fact, as a goal it offers con–

siderable impetus for research in computer science,

providing for example a ladder to even more “export-

able” programming tools and methodologies. For the

practice of programming, however, the notion of

program correctness has overshadowed that of pro–

gram believability. Like good scientists we should

not confuse our mathematical models with reality––

and correctness (like proof) is nothing but a model

of “believability.”

Relatively little philosophical discussion

(see e.g. [23]) has gone into determining alterna-

tive methodologies, developing technical tools,

and creating research paradigms for other styles

of reliability issues.

We feel that the growth of complex software

systems has not yet been discussed using metaphors

that are sufficiently precise for development of

alternative views of software believability. When

another view of “reliable design” arises that more

fully exploits the social mechanisms which have

proved useful in the development of mathematics––

and for which we have argued in this paper––we

expect to see technical developments follow in

this alternative track.

References

1. S. Ulam, Adventures of a Mathematician, Scrib-

ner, 1975.

2. A. B. Kempe, “On the Geographical Problem of

the Four Colors,” Amer. J. Mathematics, V. 2,

(1879), pp. 193-200.

3. P. J. Heawood, “Map Coloring Theorems,” Quar-

terzy J. Math. Oxford Ser., V. 24, (1890),
pp. 322-332

213

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

J. L. Britton, “The Existence of Infinite

Burnside Groups,” in W. W. Boone, F. B. Can-

nonito and R. C. Lynden (eds.), Wor2d Prob-
lems, North-Holland, (1973), pp. 67-348.

G. Bari Kolata, “Mathematical Proof: The

Genesis of a Reasonable Doubt,” Science, Vol.

192, (1976), pp. 989-990.

A. Meyer, “The Inherent Computational Com-

plexity of Theories of Ordered Sets: A Brief

Suzvey,” Proc. International Congress of
Mathematicians, August 1974.

M. O. Rabin, private communication.

P. Erdos and J. Spencer, P~obabilistie
Methods in Corbinator’its, Academic Press

(1974) .

J. Hadamard, “Sur la Distribution des Zeros

de la Fonction C(S) et ses Consequences Arith-

metiques,” Bull. See. Math de France, V. 24,
(1896), pp. 199-220.

P. J. Cohen, “The Independence of the Con–

tinuum Hypothesis,” PPOC. Nat. Acad. Sci.,

USA, Part I, V. 50, pp. 1143-1148 (1963),

Part II, V. 51, pp. 105-110, (1964).

J. B. Rosser, Simplified Independence Proofs,
Academic Press, (1971).

A Robinson, “Infinite Forcing in Model Theory;”

in J. E. Fenstad (cd.) Woe. Second Sean–
dinavian Logic Symposium, North-Holland,

(1971), pp. 317-340.

R. W. Clark, Einstein: The Life and Times,
World (1971).

C. A. R. Hoare, “Algorithm 65: FIND,” C. A.
C. M., V. 4(7), (1961), pp. 321+.

D. Knuth, J. Morris, V. Pratt, “Fast Pattern

Matching in Strings,” to appear in SIAM J.
Computing.

L. Stockmeyer, “The Complexity of Decision

Problems in Automata Theory and Logic,” MIT

Thesis, (1974).

R. London, private communication.

J. Schwartz, “On Programming,” NYU Courant

Report, 1973. (See also “A Comparison of

MADCAP and SETL” by J. B. Morris, Los

Alamos Sci. Lab, University of California,

Los Alamos, NM, 1973.)

J. K. Rice, private communication.

W. A. Wulf, R. L. London, and M. Shaw,

“Abstraction and Verification in Alphard,”

Carnegie–Mellon University, Computer Science

Department Research Report, July 1976.

D. E. Kn.th, !7!ke Art of Computew Pro@-ming,
Vol. I (1969), Vol. II (1969), Vol III (1975),

Addison–Wesley.

22. F. T. Baker, “Chief Programmer Team Management

of Production Programming,” IBM Systems Jour-
nal, Vol. 11, No. 1, (1972), PP. 56–73.

23. S. L. Gerhart and L. Yelowitz, “Observations

of Fallibility in Applications of Modern

Programming Methodologies,” IEEE Transactions
in Software Engineering, Vol. SE–2, No. 3

(September 1976), pp. 195-207.

214

